Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Mol Microbiol ; 42(4): 967-79, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11737640

RESUMEN

Pathogenic strains of Yersinia deploy a type III secretion system to inject the potent tyrosine phosphatase YopH into host cells, where it dephosphorylates focal adhesion-associated substrates. The amino-terminal, non-catalytic domain of YopH is bifunctional; it is essential for the secretion and binding of the specific chaperone SycH, but also targets the catalytic domain to substrates in the infected cell. We describe the 2.2 A resolution crystal structure of residues 1-129 of YopH from Yersinia pseudotuberculosis. The amino-terminal alpha-helix (2-17), comprising the secretion signal, and beta-strand (24-28) of one molecule exchange with another molecule to form a domain-swapped dimer. Nuclear magnetic resonance (NMR) and gel filtration experiments demonstrated that YopH(1-129) could exist as a monomer and/or a dimer in solution. The topology of the dimer and the dynamics of a monomeric form in solution observed by NMR imply that YopH has the propensity to unfold partially. The dimer is probably not important physiologically, but may mimic how SycH binds to the exposed non-polar surfaces of a partially unfolded YopH. Phosphopeptide-induced perturbations in NMR chemical shifts define a substrate-binding surface on YopH(1-129) that includes residues previously shown by mutagenesis to be essential for YopH function.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas Tirosina Fosfatasas/química , Yersinia/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sitios de Unión , Cromatografía en Gel , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/metabolismo , Fosfotirosina/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Alineación de Secuencia , Yersinia/fisiología
4.
Structure ; 9(5): 367-75, 2001 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-11377197

RESUMEN

BACKGROUND: One strategy that cells employ to respond to environmental stresses (temperature, oxidation, and pathogens) is to increase the expression of heat shock proteins necessary to maintain viability. Several heat shock proteins function as molecular chaperones by binding unfolded polypeptides and preventing their irreversible aggregation. Hsp33, a highly conserved bacterial heat shock protein, is a redox-regulated molecular chaperone that appears to protect cells against the lethal effects of oxidative stress. RESULTS: The 2.2 A crystal structure of a truncated E. coli Hsp33 (residues 1-255) reveals a domain-swapped dimer. The core domain of each monomer (1-178) folds with a central helix that is sandwiched between two beta sheets. The carboxyl-terminal region (179-235), which lacks the intact Zn binding domain of Hsp33, folds into three helices that pack on the other subunit. The interface between the two core domains is comprised of conserved residues, including a rare Glu-Glu hydrogen bond across the dyad axis. Two potential polypeptide binding sites that span the dimer are observed: a long groove containing pockets of conserved and hydrophobic residues, and an intersubunit 10-stranded beta sheet "saddle" with a largely uncharged or hydrophobic surface. CONCLUSIONS: Hsp33 is a dimer in the crystal structure. Solution studies confirmed that this dimer reflects the structural changes that occur upon activation of Hsp33 as a molecular chaperone. Patterns of conserved residues and surface charges suggest that two grooves might be potential binding sites for protein folding intermediates.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Escherichia coli , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Estructura Terciaria de Proteína , Zinc/química
5.
Mol Cell ; 6(2): 349-60, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10983982

RESUMEN

Structural, biochemical, and genetic techniques were applied to investigate the function of FtsJ, a recently identified heat shock protein. FtsJ is well conserved, from bacteria to humans. The 1.5 A crystal structure of FtsJ in complex with its cofactor S-adenosylmethionine revealed that FtsJ has a methyltransferase fold. The molecular surface of FtsJ exposes a putative nucleic acid binding groove composed of highly conserved, positively charged residues. Substrate analysis showed that FtsJ methylates 23S rRNA within 50S ribosomal subunits in vitro and in vivo. Null mutations in ftsJ show a dramatically altered ribosome profile, a severe growth disadvantage, and a temperature-sensitive phenotype. Our results reveal an unexpected link between the heat shock response and RNA metabolism.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Caenorhabditis elegans/genética , Cristalografía por Rayos X , Escherichia coli/genética , Humanos , Methanococcus/genética , Metilación , Metiltransferasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Estructura Secundaria de Proteína , ARN Ribosómico 23S/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo , S-Adenosilmetionina/metabolismo , Schizosaccharomyces/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
6.
EMBO J ; 19(4): 749-57, 2000 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-10675344

RESUMEN

We have solved the crystal structure of the heat shock protein Hsp15, a newly isolated and very highly inducible heat shock protein that binds the ribosome. Comparison of its structure with those of two RNA-binding proteins, ribosomal protein S4 and threonyl-tRNA synthetase, reveals a novel RNA-binding motif. This newly recognized motif is remarkably common, present in at least eight different protein families that bind RNA. The motif's surface is populated by conserved, charged residues that define a likely RNA-binding site. An intriguing pattern emerges: stress proteins, ribosomal proteins and tRNA synthetases repeatedly share a conserved motif. This may imply a hitherto unrecognized functional similarity between these three protein classes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli , Proteínas de Choque Térmico/química , Proteínas de Unión al ARN/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Treonina-ARNt Ligasa/química , Treonina-ARNt Ligasa/genética
7.
Cell ; 93(4): 617-25, 1998 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-9604936

RESUMEN

Cdc25 phosphatases activate the cell division kinases throughout the cell cycle. The 2.3 A structure of the human Cdc25A catalytic domain reveals a small alpha/beta domain with a fold unlike previously described phosphatase structures but identical to rhodanese, a sulfur-transfer protein. Only the active-site loop, containing the Cys-(X)5-Arg motif, shows similarity to the tyrosine phosphatases. In some crystals, the catalytic Cys-430 forms a disulfide bond with the invariant Cys-384, suggesting that Cdc25 may be self-inhibited during oxidative stress. Asp-383, previously proposed to be the general acid, instead serves a structural role, forming a conserved buried salt-bridge. We propose that Glu-431 may act as a general acid. Structure-based alignments suggest that the noncatalytic domain of the MAP kinase phosphatases will share this topology, as will ACR2, a eukaryotic arsenical resistance protein.


Asunto(s)
Modelos Moleculares , Proteínas Tirosina Fosfatasas/química , Fosfatasas cdc25 , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Disulfuros/química , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Especificidad por Sustrato
8.
Nat Struct Biol ; 4(10): 779-83, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9334739

RESUMEN

Amaranthus caudatus agglutinin contains a novel arrangement of four beta-trefoil domains. The sugar-binding site provides specificity for the carcinoma-associated T-antigen disaccharide even when 'masked' by other sugars.


Asunto(s)
Antígenos Virales de Tumores/química , Disacáridos , Lectinas/química , Conformación Proteica , Compuestos de Bencilo , Cristalografía por Rayos X/métodos , Dimerización , Grano Comestible , Modelos Moleculares , Lectinas de Plantas , Proteínas Inactivadoras de Ribosomas , Proteínas Inactivadoras de Ribosomas Tipo 1 , Semillas
11.
J Biol Chem ; 271(31): 18780-8, 1996 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-8702535

RESUMEN

X-ray crystal structures of the Yersinia tyrosine phosphatase (PTPase) in complex with tungstate and nitrate have been solved to 2. 4-A resolution. Tetrahedral tungstate, WO42-, is a competitive inhibitor of the enzyme and is isosteric with the substrate and product of the catalyzed reaction. Planar nitrate, NO3-, is isosteric with the PO3 moiety of a phosphotransfer transition state. The crystal structures of the Yersinia PTPase with and without ligands, together with biochemical data, permit modeling of key steps along the reaction pathway. These energy-minimized models are consistent with a general acid-catalyzed, in-line displacement of the phosphate moiety to Cys403 on the enzyme, followed by attack by a nucleophilic water molecule to release orthophosphate. This nucleophilic water molecule is identified in the crystal structure of the nitrate complex. The active site structure of the PTPase is compared to alkaline phosphatase, which employs a similar phosphomonoester hydrolysis mechanism. Both enzymes must stabilize charges at the nucleophile, the PO3 moiety of the transition state, and the leaving group. Both an associative (bond formation preceding bond cleavage) and a dissociative (bond cleavage preceding bond formation) mechanism were modeled, but a dissociative-like mechanism is favored for steric and chemical reasons. Since nearly all of the 47 invariant or highly conserved residues of the PTPase domain are clustered at the active site, we suggest that the mechanism postulated for the Yersinia enzyme is applicable to all the PTPases.


Asunto(s)
Proteínas Tirosina Fosfatasas/química , Yersinia enterocolitica/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Electroquímica , Ligandos , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Nitratos/química , Conformación Proteica , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Termodinámica , Compuestos de Tungsteno/química , Yersinia enterocolitica/genética
12.
Science ; 272(5266): 1328-31, 1996 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-8650541

RESUMEN

Dual specificity protein phosphatases (DSPs) regulate mitogenic signal transduction and control the cell cycle. Here, the crystal structure of a human DSP, vaccinia H1-related phosphatase (or VHR), was determined at 2.1 angstrom resolution. A shallow active site pocket in VHR allows for the hydrolysis of phosphorylated serine, threonine, or tyrosine protein residues, whereas the deeper active site of protein tyrosine phosphatases (PTPs) restricts substrate specificity to only phosphotyrosine. Positively charged crevices near the active site may explain the enzyme's preference for substrates with two phosphorylated residues. The VHR structure defines a conserved structural scaffold for both DSPs and PTPs. A "recognition region," connecting helix alpha1 to strand beta1, may determine differences in substrate specificity between VHR, the PTPs, and other DSPs.


Asunto(s)
Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Tirosina Fosfatasas/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Fosfatasa 3 de Especificidad Dual , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Fosfotirosina/metabolismo , Pliegue de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Agua/metabolismo , Yersinia/enzimología
13.
Proc Natl Acad Sci U S A ; 93(6): 2493-8, 1996 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-8637902

RESUMEN

Engineering site-specific amino acid substitutions into the protein-tyrosine phosphatase (PTPase) PTP1 and the dual-specific vaccinia H1-related phosphatase (VHR), has kinetically isolated the two chemical steps of the reaction and provided a rare opportunity for examining transition states and directly observing the phosphoenzyme intermediate. Changing serine to alanine in the active-site sequence motif HCXXGXXRS shifted the rate-limiting step from intermediate formation to intermediate hydrolysis. Using phosphorus 31P NMR, the covalent thiol-phosphate intermediate was directly observed during catalytic turnover. The importance of the conserved aspartic acid (D92 in VHR and D181 in PTP1) in both chemical steps was established. Kinetic analysis of D92N and D181N mutants indicated that aspartic acid acts as a general acid by protonating the leaving-group phenolic oxygen. Structure-reactivity experiments with native and aspartate mutant enzymes established that proton transfer is concomitant with P-O cleavage, such that no charge develops on the phenolic oxygen. Steady- and presteady-state kinetics, as well as NMR analysis of the double mutant D92N/S131A (VHR), suggested that the conserved aspartic acid functions as a general base during intermediate hydrolysis. As a general base, aspartate would activate a water molecule to facilitate nucleophilic attack. The amino acids involved in transition-state stabilization for cysteinylphosphate hydrolysis were confirmed by the x-ray structure of the Yersinia PTPase complexed with vanadate, a transition-state mimic that binds covalently to the active-site cysteine. Consistent with the NMR, x-ray, biochemical, and kinetic data, a unifying mechanism for catalysis is proposed.


Asunto(s)
Proteínas Tirosina Fosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Tirosina Fosfatasas/química , Ratas , Relación Estructura-Actividad , Vanadatos/química , Yersinia/enzimología
14.
Protein Sci ; 4(9): 1904-13, 1995 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8528087

RESUMEN

Protein tyrosine phosphatases (PTPases) play critical roles in the intracellular signal transduction pathways that regulate cell transformation, growth, and proliferation. The structures of several different PTPases have revealed a conserved active site architecture in which a phosphate-binding loop, together with an invariant arginine, cradle the phosphate of a phosphotyrosine substrate and poise it for nucleophilic attack by an invariant cysteine nucleophile. We previously reported that binding of tungstate to the Yop51 PTPase from Yersinia induced a loop conformational change that moved aspartic acid 356 into the active site, where it can function as a general acid. This is consistent with the aspartic acid donating a proton to the tyrosyl leaving group during the initial hydrolysis step. In this report, using a similar structure of the inactive Cys 403-->Ser mutant of the Yersinia PTPase complexed with sulfate, we detail the structural and functional details of this conformational change. In response to oxyanion binding, small perturbations occur in active site residues, especially Arg 409, and trigger the loop to close. Interestingly, the peptide bond following Asp 356 has flipped to ligate a buried, active site water molecule that also hydrogen bonds to the bound sulfate anion and two invariant glutamines. Loop closure also significantly decreases the solvent accessibility of the bound oxyanion and could effectively shield catalytic intermediates from phosphate acceptors other than water. We speculate that the intrinsic loop flexibility of different PTPases may be related to their catalytic rate and may play a role in the wide range of activities observed within this enzyme family.


Asunto(s)
Conformación Proteica , Proteínas Tirosina Fosfatasas/química , Yersinia/enzimología , Secuencia de Aminoácidos , Ácido Aspártico/química , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Cisteína/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Tirosina Fosfatasas/metabolismo , Serina/química , Sulfatos/química , Sulfatos/metabolismo , Compuestos de Tungsteno/metabolismo , Agua/química
15.
J Biol Chem ; 270(8): 3796-803, 1995 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-7876121

RESUMEN

An expression and purification method was developed to obtain the recombinant human dual-specific protein tyrosine phosphatase (PTPase) VHR in quantities suitable for both kinetic studies and crystallization. Physical characterization of the homogeneous recombinant protein verified the mass to be 20,500 +/- 100 by matrix-assisted laser desorption mass spectrometry, confirmed the anticipated NH2-terminal amino acid sequence and demonstrated that the protein exists as a monomer. Conditions were developed to obtain crystals which were suitable for x-ray structure determination. Using synthetic diphosphorylated peptides corresponding to MAP177-189 (mitogen-activated protein) kinase (DHTG-FLpTEpYVATR), an assay was devised which permitted the determination of the rate constants for dephosphorylation of the diphosphorylated peptide on threonine and tyrosine residues. The diphosphorylated peptides are preferred over the singly phosphorylated on tyrosine by 3-8-fold. The apparent second-order rate constant kcat/Km for dephosphorylation of phosphotyrosine on DHTGFLpTEpYVATR was 32,000 M-1 S-1 while dephosphorylation of phosphothreonine was 14 M-1 S-1 (pH 6). The reaction of DHTGFLpTEpYVATR with VHR is ordered, with rapid dephosphorylation on tyrosine occurring first followed by slow dephosphorylation on threonine. Similar results were obtained with F(NLe)(N-Le)pTPpYVVTR, a peptide corresponding to a MAP kinase-like protein (JNK1(180-189)) which is involved in the stress response signaling pathway.


Asunto(s)
Proteínas Tirosina Fosfatasas/aislamiento & purificación , Secuencia de Aminoácidos , Aniones , Cristalización , Humanos , Cinética , Datos de Secuencia Molecular , Fosforilación , Conformación Proteica , Proteínas Quinasas/metabolismo , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Especificidad por Sustrato
16.
Biochemistry ; 33(51): 15266-70, 1994 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-7803389

RESUMEN

The Yersinia protein tyrosine phosphatase (PTPase) was identified in the genus of bacteria responsible for the plague or the Black Death and was shown to be essential for pathogenesis. The three-dimensional structure of the catalytic domain of the Yersinia PTPase has been solved, and this information along with a detailed kinetic analysis has led to a better understanding of the catalytic mechanism of the PTPase. Mutational and chemical modification experiments have established that an invariant Cys residue (Cys403) is directly involved in formation of a covalent phosphoenzyme intermediate. We have shown that Arg409 plays a critical role in PTPase action and that the Cys(X)5Arg active site motif forms a phosphate-binding loop which appears to represent the essential features necessary for catalysis by the PTPases, the dual specific phosphatases, and the low molecular weight acid phosphatases.


Asunto(s)
Proteínas Tirosina Fosfatasas/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos/química , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta , Relación Estructura-Actividad , Yersinia/enzimología
17.
Nature ; 370(6490): 571-5, 1994 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-8052312

RESUMEN

Protein tyrosine phosphatases (PTPases) and kinases coregulate the critical levels of phosphorylation necessary for intracellular signalling, cell growth and differentiation. Yersinia, the causative bacteria of the bubonic plague and other enteric diseases, secrete an active PTPase, Yop51, that enters and suppresses host immune cells. Though the catalytic domain is only approximately 20% identical to human PTP1B, the Yersinia PTPase contains all of the invariant residues present in eukaryotic PTPases, including the nucleophilic Cys 403 which forms a phosphocysteine intermediate during catalysis. We present here structures of the unliganded (2.5 A resolution) and tungstate-bound (2.6 A) crystal forms which reveal that Cys 403 is positioned at the centre of a distinctive phosphate-binding loop. This loop is at the hub of several hydrogen-bond arrays that not only stabilize a bound oxyanion, but may activate Cys 403 as a reactive thiolate. Binding of tungstate triggers a conformational change that traps the oxyanion and swings Asp 356, an important catalytic residue, by approximately 6 A into the active site. The same anion-binding loop in PTPases is also found in the enzyme rhodanese.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas Tirosina Fosfatasas/química , Yersinia enterocolitica/enzimología , Secuencia de Aminoácidos , Cristalografía , Cisteína , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Compuestos de Tungsteno/química
18.
J Biol Chem ; 267(33): 23759-66, 1992 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-1429715

RESUMEN

The Yersinia protein tyrosine phosphatase (PTPase) Yop51, a C235R point mutation (Yop51*), and a protein lacking the first 162 amino acids at the NH2 terminus (Yop51*delta 162) have been overexpressed in Escherichia coli and purified to homogeneity through the use of CM Sephadex C25 cation exchange chromatography followed by Sephadex G-100 gel filtration. Greater than 50 mg of homogeneous Yop51* and Yop51*delta 162 can be obtained from a single liter of bacterial culture, whereas the same procedure yields only 5 mg of pure Yop51. Large, diffraction-quality crystals have been obtained for Yop51*delta 162. Size exclusion chromatography, sedimentation equilibrium, and enzyme concentration dependence experiments have established that the Yersinia PTPases exist and function as monomers in solution. Yop51 and Yop51* display identical UV, CD, and fluorescence spectra and have identical kinetic and structural stability properties. These full-length Yersinia PTPases have 31% alpha-helix, an emission maximum of 342 nm, a turn-over number of 1200 s-1 at pH 5.0, 30 degrees C, and an unfolding delta G value of 6 kcal/mol at 25 degrees C. Yop51*delta 162 has very similar kinetic and fluorescence characteristics to the full-length molecules, whereas its CD and UV spectra show noticeable differences due to the elimination of 162 NH2-terminal residues. The Yersinia PTPases are by far the most active PTPases known, and their kinetic parameters are extremely sensitive to the ionic strength of reaction medium.


Asunto(s)
Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Yersinia/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Dicroismo Circular , Clonación Molecular , Escherichia coli/genética , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos , Plásmidos , Reacción en Cadena de la Polimerasa , Conformación Proteica , Pliegue de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Urea , Yersinia/genética
19.
Science ; 257(5072): 964-7, 1992 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-1380181

RESUMEN

The peptide binding cleft of the class I human histocompatibility antigen, HLA-A2, contains conserved amino acid residues clustered in the two ends of the cleft in pockets A and F as well as polymorphic residues. The function of two conserved tyrosines in the A pocket was investigated by mutating them to phenylalanines and of a conserved tyrosine and threonine in the F pocket by mutating them to phenylalanine and valine, respectively. Presentation of influenza virus peptides and of intact virus to cytolytic T lymphocytes (CTLs) was then examined. The magnitude of the reduction seen by the mutation of the two tyrosines in the A pocket suggests that hydrogen bonds involving them have a critical function in the binding of the NH2-terminal NH3+ of the peptide nonamer and possibly of all bound peptide nonamers. In contrast, the mutations in the F pocket had no effect on CTL recognition.


Asunto(s)
Antígeno HLA-A2/metabolismo , Oligopéptidos/metabolismo , Linfocitos T Citotóxicos/inmunología , Secuencia de Aminoácidos , Animales , Linfocitos B/inmunología , Sitios de Unión , Línea Celular , Clonación Molecular , Epítopos/inmunología , Epítopos/metabolismo , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Virus de la Influenza A , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oligopéptidos/inmunología , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transfección , Proteínas Virales/metabolismo
20.
J Mol Biol ; 219(2): 277-319, 1991 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-2038058

RESUMEN

The three-dimensional structure of the human histocompatibility antigen HLA-A2 was determined at 3.5 A resolution by a combination of isomorphous replacement and iterative real-space averaging of two crystal forms. The monoclinic crystal form has now been refined by least-squares methods to an R-factor of 0.169 for data from 6 to 2.6 A resolution. A superposition of the structurally similar domains found in the heterodimer, alpha 1 onto alpha 2 and alpha 3 onto beta 2m, as well as the latter pair onto the ancestrally related immunoglobulin constant domain, reveals that differences are mainly in the turn regions. Structural features of the alpha 1 and alpha 2 domains, such as conserved salt-bridges that contribute to stability, specific loops that form contacts with other domains, and the antigen-binding groove formed from two adjacent helical regions on top of an eight-stranded beta-sheet, are analyzed. The interfaces between the domains, especially those between beta 2m and the HLA heavy chain presumably involved in beta 2m exchange and heterodimer assembly, are described in detail. A detailed examination of the binding groove confirms that the solvent-accessible amino acid side-chains that are most polymorphic in mouse and human alleles fill up the central and widest portion of the binding groove, while conserved side-chains are clustered at the narrower ends of the groove. Six pockets or sub-sites in the antigen-binding groove, of diverse shape and composition, appear suited for binding side-chains from antigenic peptides. Three pockets contain predominantly non-polar atoms; but others, especially those at the extreme ends of the groove, have clusters of polar atoms in close proximity to the "extra" electron density in the binding site. A possible role for beta 2m in stabilizing permissible peptide complexes during folding and assembly is presented.


Asunto(s)
Antígeno HLA-A2 , Secuencia de Aminoácidos , Animales , Carbohidratos/análisis , Humanos , Enlace de Hidrógeno , Ratones , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Difracción de Rayos X/métodos , Microglobulina beta-2/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...